Posted on

June 2024 Production Updates

Hey guys, a lot of things moving forward at Sienci Labs.

So traditionally I’ve been writing production updates for pretty much every product, but I’ve realized for some things there’s not much news with some things, especially if they’ve been shipping out smoothly for a while, so I’m going to stick to writing about new stuff. If you’re looking for an update on something and you don’t see it, check out the previous blog posts for more information.

The office guinea pig

LongMill MK2/MK2.5

As we brought up in the last update, we are transitioning the LongMill to include a few new updates to the machine. Things happened a lot faster than we expected, resulting in the rest of our original LongMill (LongBoard) controllers being sold out and allocated to the previous batch. We are now into Batch 9 and are taking orders for LongMill MK2.5.

The LongMill MK2.5 Kits are expected to ship 6-8 weeks from the time of order. Once we start shipping the backlog, we expect to be able to get this lead time down.

Chris has written a new post “Introducing the LongMill MK2.5”, which covers everything you need to know about the differences, changes, and pricing for the updates.

We are waiting on more SLBs to arrive in the next few weeks, which will allow us to start shipping LongMill MK2.5 and the rest of the SLB backorders. This means that we have a growing waitlist of orders, which we are currently prepping so that we can get out the door as soon as all of our parts arrive. We are tentatively expecting them to arrive around the end of this week or start of next week.

We’re also hiring some extra staff to help with the packing for AltMill and LongMill to help with the extra production workload.


We continue to wait for the second batch of SuperLongBoards to arrive. We are expecting them to arrive in the first week of June, which will allow us to clear the remaining backlog of orders and start shipping the LongMill. We will receive a batch of 1500 in total (but spread over a few weeks), which should allow us to stay stocked for some time.

Additionally, SLB-EXT for the first 50 AltMills testing has been successful. We are updating the value of one of the capacitors and soldering the first 50 boards by hand to fix some issues with the switching circuit. I look forward to the larger rollout of the SLB-EXT, as perhaps it may offer a solid offering for not just the AltMill but for other CNC machines as well.


A lot of progress has been made with the AltMill project, and we are getting ready for shipping. As we discussed in the last update, we are expecting a few straggler parts for us to wait on before we can ship. It appears that our last item to arrive is the wiring harnesses for the closed-loop stepper motors. We expect these to arrive in the first week of June.

Based on the team’s estimates, we expect to start shipping on the second week of June, but wanted me to let everyone know to set their expectations not too high in case we run into issues.

Additional work and supply chain continue to happen to prepare parts to arrive in July/August for the full rollout of the AltMill.

Assembly for the AltMill is in full swing, as we have mostly finished building the jigs for assembly.

Rail mounting jig
Writing down the SOPs for Z axis assembly

Some of the test packaging has arrived and we are double-checking the dimensions of everything and doing the final touches to the graphics for all of the packaging.

Packaging graphic design
Packaging layout for the AltMill
Test fit of the packaging

Also excited to share the first look at the AltMill Spindle Kits. We will have them available for sale additionally in a few weeks, as a lot of folks have asked us to allow the purchase of them outside of the AltMill kit. We likely won’t ship them until August, so there will be a bit of a waiting period for these if you’re ordering them without an AltMill.


In addition to manufacturing for the AltMill, we’re also working on building out the assembly portion of the AltMill, and we’ve already started putting together tons of resources to help users get their machines ready to go as soon as they arrive.

Sienci Router (Sienci Sprouter)

I think I mentioned this in the last update, but Johann went to China to meet with the motor manufacturers to iron out some of the things we were continuing to work on for this project.

Sample router bodies

Here’s a couple of takeaways:

  • Based on our initial assumption, we believe that we are at the edge of how accurate sensorless control can be for controlling BLDCs. That being said, Johann was able to check on the progress of testing one of the motors using sensorless control. The result seems to be usable, although there is some more improvement that can be made, as the stability on 110V versus 220V is not acceptable yet.
  • We were able to talk with a manufacturer that makes Makita clones, who may be able to make the modifications to a clone to offer external speed control, better quality bearings, and ER11 collets, which would offer a slightly improved alternative to the current Makitas
  • Using a larger motor will improve the speed stability, but would cost more and be larger than the 65mm form factor we are aiming for.

There were a lot of things that we learned from Johann’s trip to China, especially about the manufacturing capacities and business structure and manufacturing processes of different companies.

If you guys watched the Garrett Fromme livestream, I talked a bit about the router vs spindle, and the name thing. So a lot of people like the name “Sprouter” so I think we might go with that for now…

From Johann’s trip we were also able to connect with another manufacturer who makes the Makita clones and we are also assessing if we should also have the clones as another option. We’d focus on:

  • Having ER11 collets
  • An input for PWM signal to control the router with the controller
  • Better, higher quality bearings
  • Pricepoint similar to the existing Makita router

So this sort of brings up another question for the development, which is whether it’s worth having an “in-between” option between an improved brushed AC Makita router and a 1.5KW spindle.

Comparison chart

Here’s our general conclusions:

  • Since we already have the 1.5KW spindle in the works for the AltMill, offering it as an option for the LongMill tackles most of the users who want to make a big upgrade to their existing LongMill. Since the programming and setup is mostly done and put together as a kit, the setup should be easy enough for most people.
  • We found a company that can make the Makita clones with the extra features we’re looking for. Most of the development for this can be done hands off on our end so we can let this play out and test it once it’s ready.
  • The BLDC option is still going through prototype iterations and development, and will likely take a lot more time than we expected. We’re pretty close to getting the performance we want out of it, so we’ll continue to work on it and see if we can get the pricepoint down further as well. Working on the first two options provides something for people in the short term that can help us understand more about the development for the Sprouter.

Panel Computer

If you watched the podcast that I was on with Garrett the other week, you might have seen me talk about the Panel Computer.

Screencap of the podcast

I think some people are going to recognize some similarities to the concept here between the Masso and this panel computer thing.

There’s a couple of things we’re working on now:

  • Charles (our business development manager) has a lot of Linux experience, and is taking a stab at testing the device with a different OS.
  • It turns out that the chip (i5 4th gen) that is on the test computer now is only compatible up to Windows 10. I don’t think this is specifically a problem, because it does still work, but I am looking at different chipsets that support future updates. Another contender is the N5095 or N100 chip, which is slightly faster and newer. It does cost a little bit more but is potentially a better option overall.
  • We did some testing and research on doing the mass-preloading for the softwares, but need to do some more setup and testing to make sure we know how difficult and how long it takes to do.
  • I’m looking at different monitor mount/arm designs to see if there’s any that stand out and improve the usability of the computer.
  • The test computers we have have fans in them. Chris told me that he talked with some people working with a lot of wood that the main reasons their computers fail is because of the fans. So I am working on getting a fanless version for some testing as well.

At some point, Chris took one of the two computers I had for testing, so I suspect the dev team might be using it for some other stuff as well. I did hear that there will be a UI update in the future that makes improvements to the software that may improve the touchscreen experience as well.

I haven’t had the chance to install the computer directly to the machine yet, but one of our students from last term did set up an arm and portable touch-screen monitor to test the functionality of the interface and test out the “human factors” side of things.

Arm mounted to LongMill
Screen testing

It turns out with the LongMill MK2 and the AltMill, since there are threaded holes that are meant for the NEMA 23 motors on the front of the machine, this serves as a really good place to mount an arm.

Here’s some thoughts about the price point. Based on our BOM costs currently, I feel like the whole package is going to end up coming in at around $400USD. I think this is not cheap enough where I feel like it should be the default option for everyone, since a lot of people probably have a spare laptop or computer kicking around that they can use.

The only way we can get this pricepoint down further is probably if we can use lower-powered hardware, like something using ARM/RISC, but at this point, gSender optimization is not quite there for the smoothest experience. There is also updates with the new architectures that are improving its performance, especially with software that wasn’t made specifically for that architecture.

Another thing to look at is how much volume of computers we should get that would bring down the price. Right now I have quotes for 200 units, but at around 1000-1500 units, we’d save about 15% off the price.

I did create a short survey to see what sort of order interest there is for the panel computers. If you want to share your feedback, please check out the survey here: This will help us get a better idea on how many computers we should start making.