Milling a linoleum stamp

Milling materials like rubber and linoleum can be an interesting experience. Due to the elastic properties of these materials, some of the material will compress rather than being cut away by the bit or endmill the CNC is using. Getting the right feeds and speeds took a little bit of time and patience to get good results. For this particular project, we used a v-bit and F-engrave‘s v carving feature to create the negative image of the stamp.

The first step is to create a design. We used Inkscape to draw a black and white image. When we bring the image into F-engrave, the program will use the v-bit to carve all the profiles which are black and leave the white areas alone. Choose the v-bit you have and adjust the feeds and speeds for your project. A tutorial on using the v carve feature can be found here: http://www.scorchworks.com/Fengrave/F-engrave_tutorial.htm.

Next, we secure the linoleum with a bit of hot glue and let the Mill One do the rest of the work. After milling, a little bit of post processing, namely getting excess material out of the cuts, was needed. A small screwdriver or other tool works well in scraping out the material.

Here are the feeds/speeds:

Linoleum

Feedrate: 300mm/min
V engraving at 2mm max DOC
1/8″ 20 degree v bit
28 minute engraving time

Cedar Wood

Feedrate: 700mm/min
DOC: 5mm
1/4″ 2 flute upcut router bit
8 minute milling time

We carved a quick block of wood to make a holder for the linoleum. Having a block which holds the linoleum is good because you want to be able to provide even pressure across the whole stamp, as well as keep your hands away from the ink. We pushed the depth of cut to 5mm, and the Mill One carved it out quite quickly.

The rest of the stamp came together pretty easily. The linoleum fit perfectly into the holder and no glue or adhesive was needed.

In conclusion, it was a pretty easy process to create a custom stamp. Next time however, we may try a harder rubber material, since it would be easier to mill.

 

 

Making a wooden fidget spinner on the Mill One

With fidget spinners being all the rage now, especially in the 3D printing community, we decided to make our own! A desktop CNC machine is an awesome machine to make fidget spinners from, especially since you can use a wide variety of materials with a nearly infinite number of designs. This spinner was a fairly simple design, drawn on Onshape and made from a piece of scrap wood. We used three 608ZZ bearings, commonly used in skateboards and scooters, to act as weight and provide smooth motion for rotation.

Since we didn’t have 8mm thick material, we had to cut a layer off of the scrap wood to bring it down from 15.75mm to 8mm, You can see that the first half of the milling operation is just cutting away at the wood.

We started off with using carpet tape, but we found that the workpiece would shift slightly near the end of the operation, so we started again with hot glue instead. You can check out some other workholding options here: https://sienci.com/workholding-options/. Hot glue worked beautifully and held the wood on the bed without any issues.

After completing the milling operation and taking the spinner body off the bed, I tried fitting the bearings in. While they fit perfectly, a combination of the burrs and starting the bearings in at the wrong angle caused the wood to crack. I believe the wood we were using was spruce, which was quite light and easy to break. If you choose to make a fidget spinner for yourself, use a harder wood and make sure to clean the burrs out before fitting the bearings.

Overall we were pretty happy with the results, especially as our first attempt at making a fidget spinner. Stay tuned for more projects!

Feeds and speeds:

1/4″ 2 flute upcut bit at 16,000RPM
Feedrate: 700mm/min
Depth of cut: 2mm

Carving cedar on the Mill One

Here’s a quick project done on the Mill One, made from some blocks of cedar that Chris had found at Home Depot.

We had gotten a new 1/4″ 2 flute upcut bit as a gift that I hadn’t tried out yet, and I felt like a box would be a good project to try it out on. With the geometry of this box, most of the work is done carving out the inside of the box, and so a large bit which could remove a lot of material per pass was perfect.

I started off my surface milling a few mm into the wood, getting the thickness of the piece to about 1.375in. I did this because the top of the wood was slightly curved, and I wanted the top of the box to be flat.

In the beginning I had put the feedrate at around 700-800mm/min, but it felt to slow at that rate, so I bumped it up to about 1000mm/min. I think if I had kept the same feedrate, it would have given it a slightly nicer finish, but after some light sanding, the results would be indistinguishable.

One of the quirks about milling solid wood is that it will leave burrs, especially with softer wood like fir or pine. Cedar is a fairly light wood, and so there was a small amount of fuzzing at the edges, but it was easily picked or sanded off. Having a sharp bit certainly helped, and I did vary the router speed between 12,oooRPM to 16,000RPM to experiment, and found somewhere in between worked the best.

The box was drawn in Onshape and the gcode was create with Kiri:Moto, which you can add as an application in Onshape. Check out the design here: https://cad.onshape.com/documents/b27ffd01f4c9a086501d6171/w/13922f3e1399a3ddda8572bf/e/4a509eaa67fd88133009dc32

I have designed a lid for the box as well, and will be milling one out some other time.

You should be able to download the design and modify it to fit the dimensions you like. This box is designed to be made using router bits 1/4″ and smaller. If you want to use a larger router bit, increase the inner radius of the box to accommodate.

Have project ideas you want us to try out? Feel free to reach out to us!